Endoplasmic Reticulum Stress Mediates Methamphetamine-Induced Blood–Brain Barrier Damage

نویسندگان

  • Xiaojuan Qie
  • Di Wen
  • Hongyan Guo
  • Guanjie Xu
  • Shuai Liu
  • Qianchao Shen
  • Yi Liu
  • Wenfang Zhang
  • Bin Cong
  • Chunling Ma
چکیده

Methamphetamine (METH) abuse causes serious health problems worldwide, and long-term use of METH disrupts the blood-brain barrier (BBB). Herein, we explored the potential mechanism of endoplasmic reticulum (ER) stress in METH-induced BBB endothelial cell damage in vitro and the therapeutic potential of endoplasmic reticulum stress inhibitors for METH-induced BBB disruption in C57BL/6J mice. Exposure of immortalized BMVEC (bEnd.3) cells to METH significantly decreased cell viability, induced apoptosis, and diminished the tightness of cell monolayers. METH activated ER stress sensor proteins, including PERK, ATF6, and IRE1, and upregulated the pro-apoptotic protein CHOP. The ER stress inhibitors significantly blocked the upregulation of CHOP. Knockdown of CHOP protected bEnd.3 cells from METH-induced cytotoxicity. Furthermore, METH elevated the production of reactive oxygen species (ROS) and induced the dysfunction of mitochondrial characterized by a Bcl2/Bax ratio decrease, mitochondrial membrane potential collapse, and cytochrome c. ER stress release was partially reversed by ROS inhibition, and cytochrome c release was partially blocked by knockdown of CHOP. Finally, PBA significantly attenuated METH-induced sodium fluorescein (NaFluo) and Evans Blue leakage, as well as tight junction protein loss, in C57BL/6J mice. These data suggest that BBB endothelial cell damage was caused by METH-induced endoplasmic reticulum stress, which further induced mitochondrial dysfunction, and that PBA was an effective treatment for METH-induced BBB disruption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methamphetamine-mediated endoplasmic reticulum (ER) stress induces type-1 programmed cell death in astrocytes via ATF6, IRE1α and PERK pathways

Methamphetamine (MA), a psychostimulant drug has been associated with a variety of neurotoxic effects which are thought to be mediated by induction of pro-inflammatory cytokines/chemokines, oxidative stress and damage to blood-brain-barrier. Conversely, the ER stress-mediated apoptosis has been implicated in several neurodegenerative diseases. However, its involvement in MA-mediated neurodegene...

متن کامل

Thioredoxin-1 Protects Spinal Cord from Demyelination Induced by Methamphetamine through Suppressing Endoplasmic Reticulum Stress and Inflammation

Methamphetamine (METH) is a psychostimulant abused around the world. Emerging evidence indicates that METH causes brain damage. However, there are very few reports on METH-induced demyelination. Thioredoxin-1 (Trx-1) is a redox regulating protein and plays the roles in protecting neurons from various stresses. However, whether Trx-1 resists demyelination induced by METH has not been reported. I...

متن کامل

ER stress in the brain subfornical organ mediates angiotensin-dependent hypertension.

Although endoplasmic reticulum (ER) stress is a pathologic mechanism in a variety of chronic diseases, it is unclear what role it plays in chronic hypertension (HTN). Dysregulation of brain mechanisms controlling arterial pressure is strongly implicated in HTN, particularly in models involving angiotensin II (Ang II). We tested the hypothesis that ER stress in the brain is causally linked to An...

متن کامل

Altering endoplasmic reticulum stress in a model of blast-induced traumatic brain injury controls cellular fate and ameliorates neuropsychiatric symptoms

Neuronal injury following blast-induced traumatic brain injury (bTBI) increases the risk for neuropsychiatric disorders, yet the pathophysiology remains poorly understood. Blood-brain-barrier (BBB) disruption, endoplasmic reticulum (ER) stress, and apoptosis have all been implicated in bTBI. Microvessel compromise is a primary effect of bTBI and is postulated to cause subcellular secondary effe...

متن کامل

The neuroprotective effect of topiramate on the ultrastructure of pyramidal neurons of the hippocampal CA1 and CA3 sectors in an experimental model of febrile seizures in rats.

The objective of the current ultrastructural study was to explore the potentiality of the neuroprotective effect of TPM against damage of pyramidal neurons in the hippocampal CA1 and CA3 sectors in an experimental model of febrile seizures (FS) in rats. The FS group exhibited variously pronounced submicroscopic lesions of the neuronal perikarya, including total cell disintegration. Advanced cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017